LuasABD=½ x 3 x 8 x Sin 60°=12 x ½√3= 6√3 cm². Untuk menghitung luas CBD, terlebih dahulu hitung panjang sisi BD menggunakan aturan cosinus. BD²=3² + 8² - 2 x3 x 8 x Cos 60°. BD²= 9 + 64 - 24=49. BD =√49=7 cm. Perhatikan bahwa CBD memiliki panjang sisi 7cm, 24 cm dan 25cm yang merupakan tripel pitagoras.
Semogaulasan tentang dengan menggunakan rumus sin (α ± β) tunjukkan bahwa : a). sin (180° - α°) = sin α° b). sin (180° + α°) = - sin α° c). sin (270° - α° = - cos α° d). sin (270° + α° = - cos α° Bermanfaat.
IdentitasPhytagoras. Berdasarkan rumus phytagoras, akan diperoleh rumus identitas lainnya dari fungsi-fungsi trigonometri seperti pada penjelasan berikut: 1) Menggunakan segitiga pada poin 1 dan rumus phytagoras, diperoleh: BC2 + AC2 = AB2. 2) Dari rumus sinus dan kosinus pada poin 1, diperoleh:
Rumusrumus di atas hanya dapat digunakan untuk segitiga yang berbentuk siku-siku. Untuk segitiga sembarang, maka tidak akan ditemukan sisi depan, samping, dan miring seperti itu. Untuk menentukan nilai trigonometri sudut-sudut pada segitiga sembarang biasanya digunakan aturan sinus dan aturan cosinus sebagai berikut :
asin B = b sin A 4 ½ = 10 sin A 2 = 10 sin A sin A = 2/10 = ⅕ karena yang ditanyakan adalah cos A maka kita akan mencarinya dengan berpatokan pada nilai sin A yang telah kita peroleh, sebagai berikut: cos² A = 1 - sin² A = 1 - (⅕)² = 24/25 cos A = ⅖√6 CONTOH 8
Kurangngerti nihh ! kan rumus sinus itu A/sin A dan B/sin B. bagaimana penyelesaiannya kalau yang di cari itu A, sin A, B, sin B.. maksudnya rumusnya bagaimana seperti A = sin A. B/ sin B.. rumusnya saja. Question from @zulkifly99 - Sekolah Menengah Atas - Matematika
ECFpt. Sin A - Sin B is an important trigonometric identity in trigonometry. It is used to find the difference of values of sine function for angles A and B. It is one of the difference to product formulas used to represent the difference of sine function for angles A and B into their product form. The result for Sin A - Sin B is given as 2 cos ½ A + B sin ½ A - B. Let us understand the Sin A - Sin B formula and its proof in detail using solved examples. What is Sin A - Sin B Identity in Trigonometry? The trigonometric identity Sin A - Sin B is used to represent the difference of sine of angles A and B, Sin A - Sin B in the product form with the help of the compound angles A + B and A - B. Let us study the Sin A - Sin B formula in detail in the following sections. Sin A - Sin B Difference to Product Formula The Sin A - Sin B difference to product formula in trigonometry for angles A and B is given as, Sin A - Sin B = 2 cos ½ A + B sin ½ A - B Here, A and B are angles, and A + B and A - B are their compound angles. Proof of Sin A - Sin B Formula We can give the proof of Sin A - Sin B formula using the expansion of sinA + B and sinA - B formula. As we stated in the previous section, we write Sin A - Sin B = 2 cos ½ A + B sin ½ A - B. Let us assume two compound angles A and B, given as A = X + Y and B = X - Y, ⇒ Solving, we get, X = A + B/2 and Y = A - B/2 We know, sinX + Y = sin X cos Y + sin Y cos X sinX - Y = sin X cos Y - sin Y cos X sinX + Y - sinX - Y = 2 sin Y cos X ⇒ sin A - sin B = 2 sin ½ A - B cos ½ A + B ⇒ sin A - sin B = 2 cos ½ A + B sin ½ A - B Hence, proved. How to Apply Sin A - Sin B? Sin A - Sin B trigonometric formula can be applied as a difference to the product identity to make the calculations easier when it is difficult to calculate the sine of the given angles. Let us understand its application using an example of sin 60º - sin 30º. We will solve the value of the given expression by 2 methods, using the formula and by directly applying the values, and compare the results. Have a look at the below-given steps. Compare the angles A and B with the given expression, sin 60º - sin 30º. Here, A = 60º, B = 30º. Solving using the expansion of the formula Sin A - Sin B, given as, Sin A - Sin B = 2 cos ½ A + B sin ½ A - B, we get, Sin 60º - Sin 30º = 2 cos ½ 60º + 30º sin ½ 60º - 30º = 2 cos 45º sin 15º = 2 1/√2 √3 - 1/2√2 = √3 - 1/2. Also, we know that Sin 60º - Sin 30º = √3/2 - 1/2 = √3 - 1/2. Hence, the result is verified. ☛ Topics Related to Sin A - Sin B Trigonometric Chart sin cos tan Law of Sines Law of Cosines Trigonometric Functions FAQs on Sin A - Sin B What is Sin A - Sin B in Trigonometry? Sin A - Sin B is an identity or trigonometric formula, used in representing the difference of sine of angles A and B, Sin A - Sin B in the product form using the compound angles A + B and A - B. Here, A and B are angles. How to Use Sin A - Sin B Formula? To use Sin A - Sin B formula in a given expression, compare the expansion, Sin A - Sin B = 2 cos ½ A + B sin ½ A - B with given expression and substitute the values of angles A and B. What is the Formula of Sin A - Sin B? Sin A - Sin B formula, for two angles A and B, can be given as, Sin A - Sin B = 2 cos ½ A + B sin ½ A - B. Here, A + B and A - B are compound angles. What is the Expansion of Sin A - Sin B in Trigonometry? The expansion of Sin A - Sin B formula is given as, Sin A - Sin B = 2 cos ½ A + B sin ½ A - B, where A and B are any given angles. How to Prove the Expansion of Sin A - Sin B Formula? The expansion of Sin A - Sin B, given as Sin A - Sin B = 2 cos ½ A + B sin ½ A - B, can be proved using the 2 sin Y cos X product identity in trigonometry. Click here to check the detailed proof of the formula. What is the Application of Sin A - Sin B Formula? Sin A - Sin B formula can be applied to represent the difference of sine of angles A and B in the product form of sine of A - B and cosine of A + B, using the formula, Sin A - Sin B = 2 cos ½ A + B sin ½ A - B.
rumus sin a sin b